SA WG2 Temporary Document

Page 1

SA WG2 Meeting #130
S2-1900409
21-25 January, 2019, Kochi, India
Source:
Apple
Title:
Discussion paper for ATSSS MPTCP Proxy Type
Document for:
Agreement
Agenda Item:
6.8
Work Item / Release:
ATSSS / Rel-16
Abstract of the contribution: This paper provides the comparisons between SOCKSv5 [2] and Transport Converter [3] proxy types in the context of 3GPP ATSSS MPTCP Proxy. In addition, it makes a proposal on the MPTCP Proxy type defined for ATSSS in Rel-16.
1.
Discussion
The intent of this paper is to advocate the use of Transport Converter [3] as the MPTCP Proxy type for ATSSS MPTCP function in Rel-16. This paper provides comparisons between the SOCKSv5 [2] and the Transport Converter [3] proxies in order to raise awareness on their performance aspects. The mechanisms for the proxies are described as follows.
1.1 SOCKS

As defined in RFC1928, the client creates a connection to a SOCKS proxy, exchanges authentication information and indicates the destination address and port of the final server. The SOCKS proxy then creates a connection to the final server and relays all data between the two proxied connections. The operation is illustrated in figure 1.1-1 below.

[image: image1.emf]

 Client

SYN

SOCKS Proxy Server

SYN+ACK

ACK

Ver=5, Auth Methods
 Method

Auth Request (unless “No auth” method negotiated)
 Auth Response
 Connect [→Server:Port]
 SYN

SYN+ACK
 Succeeded

 Data1

Data1
 Data2

Data2

Client

SYN

SOCKS Proxy Server

SYN+ACK

ACK

Ver=5, Auth Methods

Method

Auth Request (unless “No auth” method negotiated)

Auth Response

Connect [→Server:Port]

SYN

SYN+ACK

Succeeded

Data1

Data1

Data2

Data2

Figure 1.1-1: Establishment of a TCP connection through a SOCKS proxy
1.2
Transport Converter

Similar to SOCKS, the Convert protocol also relays data between an upstream and a downstream connection. Unlike SOCKS, however, the Convert protocol is capable of utilizing TCP Fast Open [4] to reduce the connection establishment delay. It also allows the client to learn whether the final server supports a given TCP extension (e.g. MPTCP), which enables the client to bypass the Transport Converter. This is illustrated in figures 1.2-1 and 1.2-2 below.

[image: image2.emf]

 Client

SYN, MPC [→Server:Port]

Converter Server

SYN+ACK, MPC [.]

ACK, MPC

SYN, MPC

SYN+ACK

Data1

Data1

Data2

Data2

ACK

Client

SYN, MPC [→Server:Port]

Converter Server

SYN+ACK, MPC [.]

ACK, MPC

SYN, MPC

SYN+ACK

Data1

Data1

Data2

Data2

ACK

Figure 1.2-1: Establishment of a Multipath TCP connection through a Transport Converter towards a non-MPTCP capable server

[image: image3.emf]

 Client

SYN, MPC [→Server:Port]

Converter Server

SYN+ACK, MPC [MPC SUPPORTED]

ACK, MPC

SYN, MPC

SYN+ACK, MPC

Data1

Data1

Data2

Data2

ACK, MPC

Client

SYN, MPC [→Server:Port]

Converter Server

SYN+ACK, MPC [MPC SUPPORTED]

ACK, MPC

SYN, MPC

SYN+ACK, MPC

Data1

Data1

Data2

Data2

ACK, MPC

Figure 1.2-2: Establishment of a Multipath TCP connection through a converter towards a MPTCP capable server
1.3
Comparisons

The following summarizes the major differences between the SOCKS and Convert protocols, and highlights the benefits provided by the Transport Converter.
(1) Reduced Connection Establishment Delay
Due to the utilization of TCP Fast Open option, the Convert protocol exchanges all control information during TCP three-way handshake. This reduces the connection establishment delay compares to SOCKS that requires two or more round-trip-times before the establishment of the downstream connection towards the final server.
(2) TCP Extensions Transparency
The Convert protocol explicitly takes the TCP extensions into account. The client can learn whether a given TCP extension is supported by the final server. This allows the client to bypass the Transport Converter when the destination supports the required TCP extension. The SOCKS protocol does not provide this functionality.
(3) Server Availability Transparency
The Transport Converter will only accept the connection initiated by the client provided that the downstream connection is accepted by the final server. If the server refuses the connection establishment attempt from the Transport Converter, then the upstream connection from the client is rejected as well. This an important feature for applications that check the availability of a server or use the time to connect as a hint on the selection of a server. In contrast, SOCKS always accept the client connection regardless of whether the final server is reachable.
2.
Proposal
Based on the above, this paper proposes that the Transport Converter [3] proxy type be used as the supported MPTCP Proxy type in Rel-16 for ATSSS.
3.
References
[1]
draft-ietf-mptcp-rfc6824bis-12: "TCP Extensions for Multipath Operation with Multiple Addresses".

[2]
RFC1928: “SOCKS Protocol Version 5”.

[3]
draft-ietf-tcpm-converters-04: "0-RTT TCP Convert Protocol".
[4]
RFC7413: “TCP Fast Open”.
3GPP

SA WG2 TD

_1608992365.doc

Converter

Client

Server

Data2

Data1

Data1

ACK

Data2

SYN+ACK, MPC [.]

ACK, MPC

SYN+ACK

SYN, MPC

SYN, MPC [→Server:Port]

_1608993029.doc

Converter

Client

Server

SYN+ACK, MPC [MPC SUPPORTED]

Data2

Data1

Data1

ACK, MPC

Data2

ACK, MPC

SYN+ACK, MPC

SYN, MPC

SYN, MPC [→Server:Port]

_1608992358.doc

SOCKS Proxy

Client

Server

Data2

Data2

Data1

Auth Request (unless “No auth” method negotiated)

Method

Ver=5, Auth Methods

Auth Response

Connect [→Server:Port]

Data1

Succeeded

SYN+ACK

SYN

SYN+ACK

ACK

SYN

